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Abstract

We have recently solved the inverse scattering problem for one-parameter
families of vector fields, and used this result to construct the formal solution
of the Cauchy problem for a class of integrable nonlinear partial differential
equations in multidimensions, including the second heavenly equation of
Plebanski and the dispersionless Kadomtsev—Petviashvili (dKP) equation. We
showed, in particular, that the associated inverse problems can be expressed in
terms of nonlinear Riemann—Hilbert problems on the real axis. In this paper, we
make use of the nonlinear Riemann—Hilbert problem of dKP (i) to construct the
longtime behaviour of the solutions of its Cauchy problem; (ii) to characterize
a class of implicit solutions; (iii) to elucidate the spectral mechanism causing
the gradient catastrophe of localized solutions of dKP, at finite time as well
as in the longtime regime, and the corresponding universal behaviours near
breaking.

PACS number: 02.30.Jr

(Some figures in this article are in colour only in the electronic version)

1. Introduction

It was observed long ago [1] that the commutation of multidimensional vector fields can
generate integrable nonlinear partial differential equations (PDEs) in arbitrary dimensions.
An important example of PDEs of this type is the dispersionless Kadomtsev—Petviashvili
(dKP) equation

(uy +uuy)y +uyy, =0, u=ulx,yt) eR, x,y,t €R, (1)
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arising from the commutation
[Li, L] =0 ©)
of the following pair of one-parameter families of vector fields:

Ly =8y + A8, — u,dy,
Lo=8 + (A2 +u)d, + (—Auy +1uy)d;,

3)

A being the spectral parameter.

The dKP equation is the x-dispersionless limit of the celebrated Kadomtsev—Petviashvili
(KP) equation [2] (u; + uuty + txxx)y + outy, = 0,0 = %1, and therefore it describes, for
instance, the evolution of small amplitude, nearly one-dimensional waves in shallow water
[3] near the shore, when the x-dispersion can be neglected. It is also a model equation in the
description of unsteady motion in transonic flow [4] and in the nonlinear acoustics of confined
beams [5].

We remark that, if the y-dispersion term u,, is also negligeable in (1), the dKP equation
reduces to the celebrated (1+1)-dimensional Hopf equation: u, + uu, = 0, the integrable
prototype model for the description of the gradient catastrophe (breaking) of a localized one-
dimensional wave. Therefore a natural question is whether the dKP equation can be viewed
as the integrable universal model in the description of the gradient catastrophe of a localized
two-dimensional wave. As far as we know, no precise results are known in this direction,
although some formal considerations have been made, in the framework of unsteady motions
in transonic flow [6]. The following issues are, in particular, relevant. (i) Do localized initial
data evolving according to dKP break? (ii) Do small initial data also break? (ii) If breaking
occurs, does it take place at a point of the (x, y)-plane or on a line? (iii) Do the analytic and
geometric aspects of the breaking exhibit universal features, like in the one-dimensional case?
(iv) How are the breaking features connected with the dKP initial data? In this paper all these
questions will find a proper answer.

Dispersionless (or quasi-classical) limits of integrable PDEs, having dKP as prototype
example, arise in various problems of Mathematical Physics and are intensively studied in
the recent literature (see, f.i., [7-21]). The Lax representation (3) and the Hamiltonian
formulation for dKP can be found, for instance, in [9, 10]. An elegant integration scheme for
dKP, applicable in general to nonlinear PDEs associated with Hamiltonian vector fields, was
presented in [10]. A nonlinear d-dressing was developed in [15]. Special classes of nontrivial
solutions were also derived (see, f.i., [14, 16]).

The inverse scattering transform for one-parameter families of multidimensional vector
fields has been developed in [22] (see also [23]). This theory, introducing interesting novelties
with respect to the classical inverse scattering transform for soliton equations [3, 24], has
allowed one to construct the formal solution of the Cauchy problems for the heavenly equation
[25] in [22] and for the following novel system of PDEs,

Uyr + Uyy + (Ul )y + Vpllgy — Vyllyy =0,

“4)
U + Uyy + UVxy + UxUyy — VyUyy =0,
arising from the commutation of the vector fields
Li=0y+ (A +v,)0y — uydy, 5)

Lo=d + (A2 +Avg +u — vy)dy + (—Auy +1y)d;,

in [26]. The Cauchy problem for the v = 0 reduction of (4), the dKP equation (1), was also
presented in [26], while the Cauchy problem for the u = 0 reduction of (4), an integrable
system introduced in [27], was given in [28]. Due to the ring property of the space of
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eigenfunctions associated with vector fields, the inverse problem can be formulated in three
different distinguished ways, one of them being expressed in terms of a linear integral equation.

In this paper we show that one of these formulations, the nonlinear Riemann—Hilbert
(RH) problem on the real axis, is an efficient way (i) to construct the longtime behaviour of
the solutions of the Cauchy problem for dKP; (ii) to characterize a class of implicit solutions
of dKP, parametrized by an arbitrary spectral function of a single variable; (iii) to establish
that localized solutions of dKP generically break (if small, they break in the longtime regime),
and to study in great detail the universal features of the wave breaking: the similarity solution
before breaking, the vertical inflection at breaking, and the development of a three-valued
region in the (x, y)-plane delimited by a caustic after breaking; (iv) to connect the analytic and
universal features of this gradient catastrophe with the initial data, via the spectral transform
developed in [26].

The paper is organized as follows. In section 2, we present the nonlinear RH dressing
of the system (4) and of its dKP reduction (1), showing that it provides an implicit spectral
representation of the solution depending on the solution itself, leading to the breaking of
localized solutions at finite . In section 3, we make use of such a RH problem to construct
the longtime behaviour of the solutions of the Cauchy problem for the dKP equation, showing
that, also asymptotically, the above spectral mechanism for breaking is present. In section 4,
we select a class of spectral data for which the vector RH problem decouples and linearizes,
leading to a class of implicit solutions of dKP. In section 5, we study the analytic aspects of
the longtime breaking of a localized initial condition, showing that this problem is connected
to the wave breaking of a localized two-dimensional wave evolving according to the (1+1)-
dimensional Hopf equation. In section 6, we describe the analytic aspects of the wave breaking
at finite time.

2. The nonlinear RH inverse problem

From the inverse scattering transform developed in [26] for the system (4) and for its dKP
reduction (1), one extracts the following inverse problem.

Proposition. Consider the vector nonlinear RH problem on the real line:
T =RGE (W),  reR, (0)

where the solutions T+(\) = (7'[1ﬂE A), JTzi (K)) e C? are two-dimensional vector functions
analytic in the upper and lower halves of the complex A plane, normalized in the following
way:

é —A = Ay +x —2ur) -
nim:( o ”)+0<r‘>, 21> 1, )

where
u= lim (A(m () — 1)), ®)

and 7%(2) = (Ri(&1, &), Ra(81, ) € C?, E € C? are given differentiable spectral data.

Then, assuming that the above RH problem and its linearized form 6* = Jo ~ are uniquely
solvable, where J is the Jacobian matrix of the transformation (6): J;; = 0R;/9¢;,1, j = 1,2,
the solutions ﬁi(A) of the RH problem (6) are common eigenfunctions of the vector
fields (5): ijﬁi =0,j=1,2, where

v(x,y,t) = —yu — /\lim A(nli + tnziz —(x — Ay)), 9)
—00

and u, v are solutions of the nonlinear system (4).
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If the spectral data 7%(2 ) satisfy the reality constraint
RRE) =¢, Vel (10)
then the solutions u, v are real: u,v € R. If, in addition, the transformation { — R() is
canonical:

(Ri, Rak; = 1, (11)
where {-,-} is the Poisson bracket with respect to the variallles (¢1, &), then v = 0, T (1) are

common eigenfunctions of the vector fields (3): L jﬁi =0, j = 1,2 and u satisfies the dKP
equation (1).

Proof. One easily shows that the vectors L jﬁi, Jj =1, 2, solve the linearized RH problem:
(Lj7*) = J(L;#7), and that L ;7= — 0 as A — oco. By uniqueness, we infer that 7= are
eigenfunctions of the operators L;: L;7% = 0, j = 1,2, implying that u and v are solutions
of the nonlinear system (4).

From the reality constraint (10) it follows that 7+ = 7, implying u, v € R. From
the dKP constraint (11) it follows that {7}, 77} = {7, 7, }, » € R, where {-,-} is now the
Poisson bracket with respect to the variables (x, ). Since {nli, i) — 1,as A — oo, the
analyticity properties of the eigenfunctions imply that {7}, 73} = {7, , 75 } = 1. Atlast,
applying Z_,-, Jj = 1,2 to this equation, one obtains the Hamiltonian constraint v = 0, and
system (4) reduces to the dKP equation. |

From the integral equations
1 dx’

() = =A%t — Ay +x — 2ut + —

Bt Jo 77— om0y R 07 G0):

da’ (12)

1
TN =A+— [ —————Ry(a; V), m,; (M),
™ () 2ni/1é)»/—()»—10) 2 (4,73 G)
characterizing the solutions of the RH problem (6), and from definition (8), one obtains the
following spectral characterization of the solution u:

u=F(x-—2ut, yt)eR, (13)
where the spectral function F, defined by

da _ _
F(E, yvt) = _/l;z_mRZ(nl (}"1 sv y,t)sﬂz ()\'75’ y,t)),

R;(&1,8) = ¢ + R;(61, &), j=12,

is connected with the initial data u(x, y, 0) via the direct spectral transform developed in [26].

We remark that, while the inverse spectral transform of most of the known integrable
PDEs provides a spectral representation of the solution involving, as parameters, the spacetime
coordinates, the inverse problem of dKP provides a spectral representation (13), (14) of the
solution involving, as parameter, also the solution u itself, in the combination (x —2ut). This is
the spectral mechanism for the breaking of a generic localized initial condition at finite time ¢.
We postpone to sections 5 and 6 a detailed analysis of the analyticity aspects of such a breaking.

We also remark that the mechanism responsible for this feature is that the vector field L,
is quadratic in A and, at the same time, it contains the partial differential operator d;. Due
to that, the normalization of the analytic eigenfunction of ﬁz involves the coefficient u of the
vector field. It is easy to see that these properties are shared by the whole dKP hierarchy,
associated with time operators L, involving higher powers of A. An example of integrable
system not associated with the commutation of vector fields, but exhibiting an inverse problem
in which the solution is implicit, is the Harry Dym equation [29, 30], connected with the KdV
equation by a hodograph transformation.

(14)
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3. Asymptotics of the dKP equation

In this section, we concentrate on the study of the longtime behaviour of the solutions of dKP.
Of course, this study is meaningful only if no breaking takes place before, at finite time. If
the initial condition is, for instance, small, the nonlinear term in (1) becomes important only
in the longtime regime, and no breaking takes place before.
As we shall see in the following, the spectral mechanism causing the breaking of a localized
initial condition evolving according to the dKP equation is present also in the longtime regime.
We study the longtime # >> 1 regime in the space regions

X =X+, y = vot, X —2ut,v;, v, =0(), v, #0,t>1. (15)

Then the system of nonlinear integral equations (12) is conveniently rewritten in terms of
the functions ¢;, j =1, 2, defined by

o1(A) =7 (W) + A%t + Ay — (x — 2ut), Pr(A) =1, (A) — A, (16)

as follows,

1 av’ _
$;(0) = —/ — __RjE—2ut— (N —A)O — A
R

271 Jo W — (= i0)
+P1 (M), A + (V) j=12, (17
where
A= —2 4 v1+v—§. (18)
2 4

The fast decay, in 7, of ¢;, j = 1,2, due to the linear growth in ¢ of the first argument of
R;, j =1, 2, is partially contrasted if A, = A_; i.e., on the parabola:

2 2
X+l =% v+ 2 =0 (19)
4t 4

of the (x, y)-plane.
On such a parabola the integral equations read

T
Z T 27 Jg M — (A —i0)
V22 .
ij(fc—Zut—()J+E) t+¢1(x/),)\’+¢2(x’)), =12 (20

Since, in this case, the main contribution to the integrals occurs when A’ ~ —v,/2, we make
the change of variable A’ = —v,/2 + 1’ /+/t, obtaining:

P dp’ s w2 (_2 ﬂ)

0 = i Au'/ﬁ—mvz/z—imR’ (x oo\ TG )
vy W vy W .
_2+ﬁ+¢2<_2+ﬁ))’ I=he e

If |\ + v2/2| 3> t7!/2, equation (21) implies that ¢;(A) = O(t~'/?), j = 1,2:

1 2 2 _2 i
#i¢) _2m¢?(x+vz/2—10)>/Rd“ R’<x 2t +¢‘( 2+ﬁ>’
—2+¢2<—2+ﬂ)), j=12 (22)
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and, via (13) and (14), that

! du R (x—zm—,ﬁm (—2+i>
i J 2 1 Y )

v v, W 1
-3eo(-5+)) o (5): =

For A + v2/2 = p/+/t, p = O(1), instead, ¢; (1), j = 1,2 are O(1):

v, 1 du - n vy W
|l——=+=)~— ] ————— R (7 —2ut —u*+ ——= 4+,
¢’< 2 ﬁ) 271 Jo W= (u—i0) ’(x v ¢1( 2 ﬁ)

V2 v, o .
_5+¢2<_5+$>>, j=1.2. (24)

Therefore it is not possible to neglect, in the integral equations (21), ¢ » in the arguments of
R, »; it follows that these integral equations remain nonlinear also in the longtime regime.
The above results can be summarized as follows.
On the parabola (19), in the spacetime regions (15), the longtime behaviour of the solution
of the dKP equation is given by

—]G +y2 2ur, 2 ) + 1 (25)
u_ﬁ ta Ty oﬁ’

u=—

where
1
GE,n)= _T/ duR (& — p? +ar (s &, ), —n + ax (s &, ), (26)
71 Jr

R, is the second component of the spectral data R ,and a; »(w; &, n) are the unique solutions
of the nonlinear integral equations

it = [ e st
aj:u“’é’n_zn_i RW—(/L—IO) ]E w all’«véﬂ?,
—n+ay (W' €, m), ji=12. (27)

We remark that the system of integral equations (27) characterizes the solutions of the
following vector nonlinear RH problem on the real p-axis:

A*(us &,m) = A~ (13 €, ) + R(A~ (13 €, ), neR,
R 2\ - (28)
A (u g, ) = <S s ) +Ou), > 1,
with
. e (5w
A E,m) = A (s €, ) ) (29)

Outside the parabola, the solution decays faster than 1/4/7.

We remark that equation (25) has been obtained under the hypothesis that both arguments
of G are O(1); then u = O(1/+/t). It follows that 2ut = O(+/t) and, consequently, also
X=x+ yz/(4t) = O(/1), to balance the term 2ut.

From equation (25) it follows that the spectral mechanism causing the breaking of a
localized initial condition evolving according to the dKP equation is present also in the
longtime regime. The analytic aspects of the longtime breaking of dKP solutions are illustrated
in section 5.

6
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4. Particular solutions of the RH problem

In this section we construct a class of explicit solutions of the vector nonlinear RH
problem (6) and, correspondingly, a class of implicit solutions of the dKP equation
parametrized by an arbitrary real spectral function of one variable (the general solution would
depend on an arbitrary real spectral function of two variables).

Suppose that the components of the spectral data R in (6) are given by:

Ri(C1, &) = ¢; @@ i=1,2 (30)

in terms of the single real spectral function f of a single argument, depending on ¢; and ¢,
only through their product.
Then the RH problem becomes

nf =m; /), L eR,
o €1y
=, e fmm)
and the following properties hold.
(i) The reality and the dKP constraints (10) and (11) are satisfied.
(ii) m{n} = m; m, . Consequently, (71{r Ty ) is just a polynomial in A:
iy =y = —t27 — yAT + (x — But)h — 2yu + 313, 'uy = w(n), (32)

and the vector nonlinear RH problem (6) decouples into two scalar, linear RH problems:
wf = el ), i =y e W), (33)

(iii) Since, from (33),

njfr ei(—)ff*()\) — ﬂ; ei(—)ff’(k)’ j =1, 2’ (34)
where
o) = ! / ax Fw@®)) 35)
T 27 Jg M — (A £10) ’

also n;.' el 1) Jj = 1,2 are polynomials in A. We expand them in powers of A and
introduce the notation

(A" F) = L/ A F(w(n) da, neN. (36)
2 R

From the positive power expansion it follows that
e W) — g i W)

_ 2 (f)?

=== (DA +x = 2ut = y(f) =t | M)+ == ) (37
73 e WO = o W)y (fy,

implying the following explicit solution of the Riemann problem:

2
it = [—Azr R+ = 2ut — ()~ 1 <<)\f> . %)] i)

7= (= (e e,

(38)
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From the 1/ terms of 7} e "® i = 1,2, that must be zero, one finally obtains the
two conditions

(f)?

u=(Af)— T,

() oy &
%xwy=wrwx—mnuww(uﬂ+—7)+rQﬂﬂ+uww3+7;>.
Since, through (32) and (36), (A" ), n = 0, 1, 2, depend implicitely on the solution « and

on (19, 1uy), the system (39) characterizes a class of implicit solutions of the dKP equation,

parametrized by the arbitrary real spectral function f of a single variable.

5. Longtime breaking of dKP solutions

In this section we show that longtime solutions of dKP break. Of course this analysis is
meaningful only when breaking does not take place before, at finite time. If, for instance, the
localized initial condition is small, the nonlinear term of the dKP equation becomes relevant
only in the longtime regime, and breaking can occur only when ¢ is large.

Let U(x, y, t) be the exact solution of the functional equation (25) at the leading order,
ie.:

Uy 1) = =G (x+y—2—2Ut 1) (40)
o NG 4t "2t)°

where G, connected with the initial condition of dKP via the direct spectral problem introduced

in [26], is a largely arbitrary differentiable function of two arguments. It is easy to verify that

U is the general solution of the first order PDE in 2 + 1 dimensions:
2

y y Y
Uu+=-U,—=—=U,+—+UU, =0. 41
TV 4 2t “h
Equation (40) suggests introducing the convenient variables:
vV =41U,
2 42)
. y ) . (
=x+—, =, =241,
e 4t Y 2t Vi
transforming the PDE (41) into the (1+1)-dimensional Hopf equation:
Vi+VV: =0. (43)

Then the longtime behaviour of the dKP solutions is reduced to the study of the evolution of a
two-dimensional localized wave under the (1+1)-dimensional Hopf equation (43); its solution,
defined implicitly by the equations

V=GE ) (44a)
§=X-GE I, (44b)

depends on § only parametrically.

Each small portion of the two-dimensional localized wave, characterized by its own
amplitude V, travels with constant speed V in the ¥-direction. Equations (44b) define a two-
parameter family of characteristic curves in the (%, ¥, f)-space, the parameters being &, . Due
to the localization properties of G, on each plane y = const, the characteristic curves obtained
varying & intersect, giving rise to the breaking phenomenon. The first breaking will take place
therefore at a specific point (X, ¥, f) and, going back to the physical variables inverting the
transformation (42), at a specific point (xp, yp) of the (x, y)-plane, at the breaking time #,
(see figure 1).

8
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Figure 1. The two-parameter family of characteristic curves describing the evolution of 2D-waves
according to the (1+1)-dimensional Hopf equation.

5.1. 2D—breaking according to the Hopf equation

In this section we discuss in detail the analytic aspects of the wave breaking of a localized
two-dimensional wave evolving according to the Hopf equation (43), whose solution is defined
implicitely by equations (44).

One solves (44b) with respect to the parameter &, obtaining &(X, 7, 7), and replaces it
into (44a), to obtain the solution V = G(&(%, y,7), 7). The inversion of equation (44b) is
possible iff its £-derivative is different from zero. Therefore the singularity manifold (SM) of
the two dimensional Cauchy problem for the Hopf equation is the two-dimensional manifold
characterized by the equation

1

SEyH)=1+G:(&,9)i=0 = IZ_M'

(45)

Since

Ve nGE, y
VgV = Le0GE ) (46)
1+Ge(E, )1
the slopes of the localized wave become infinity (the so-called gradient catastrophe) on the
SM, and the two-dimensional wave ‘breaks’. .
Then the first breaking time 7,, and the corresponding characteristic parameters &, =

(&, yp) are defined by

- 1 1
f, = ———=— = global min (——~ ) >0, 47
Gz (&) G:(£.9)
and characterized by the equations:
Ge(&) <0, Gee (5) = Ges(8) = 0, s
Geee () > 0, o = G (B) Geyy(B) — Gy (&) > 0.

The corresponding point Xp = (3, ¥») in which the first wave breaking takes place is,
from (44b):

%y = & + G(E)iy. (49)

9
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Now we evaluate equations (44b) and (45) near breaking, in the regime:
X =1+ 7, =9+, T=0+7, E=¢&+¢&, (50)

where X', 3,7, &' are small. Using (47)-(49), equation (44b) becomes, at the leading order,
the following cubic equation in &’:

E7 +a(3)E?+b(Y . T)E —yX(F,¥.T) =0, (51)
where
~7 3Gy ~7 ~ 3 ~/
a(5) =Ly b(i', 1) = ——I[Gee + Geyy 371,
Gees Geet
X&', 9,1 =% —G&, p+ ) —[G&, +5) — Gl (52)
~F 4 ﬂy/ _ G + Gi’f‘ 5}/2 _ Gvs’/;/‘i' Gﬁ'i’ 57/3’ y = 6|G§| ’
Gg 2G5 i 6G§ Gggg
with
21
€= —, le] « 1, (53)
Iy
corresponding to the maximal balance
€115 = O (e, |X| = 0(e[?). (54)

In (52) and in the rest of this section, all partial derivatives of G whose arguments are not
indicated are meant to be evaluated at &, = (&, V).
The three roots of the cubic are given by the well-known Cardano formula:

AV a 1 1
SO(x’y’t)=_§+(A+)3 +(A—)3’

(55)
a 1 1 1 V3. 1 1
g (', Yy, 1) = 3 5((A+); +(A)H)+ 71((A+)3 — (A7),
where
Ay =REVA (56)
and the discriminant A reads
A =R>+ 0, (57)
with
- 3b —a? |Ge| o
QG 1) =g =g e+ 7,
3 33 (58)
RE 5. 7) = Lx@. 5.1+ 2+ 206, 7)
b 9 2 9 9 18 3 9 .
At the same order, function S in (45) becomes
bt4 1 /. !~/ ~/. bl
S5, 1) = Gef' + S[Grest” + 26 e58'Y + Geys 37N (59)

Known &’ as a function of (%, y, 7) from the cubic (51), the solution V of the Hopf equation
and its gradient are then approximated, near breaking, by the formulae:

V(E,5,0)~GE+E, 5 +7),
Ve snGE +&, 5 +5) (60)
G:l' + 3[Geeek? +2Gees €'V + sy 320

VienV ~

10
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Together with the breaking point X, another distinguished point is the inflection point X Iz

Xp= (& @), ), Xp(f) =% + GT' (61)
atwhich R = X = 5§ =a =§"=§; =§;; = 0 and, consequently:
1
V=0, VesV =z ( ) Vir = Vi = 0. (62)

We observe that ):Ef =Xpati =7

5.1.1. Before breaking. If 7 < 7,(f' < 0), the coefficient Q, defined in (58), is strictly
positive, due to (48); then the discriminant A = R? + Q7 is also strictly positive and only the
root £ is real. Correspondingly, the real solution of (43) is single valued and described by
Cardano’s formula. In addition, function S in (59) is also strictly positive and V z 3 V' is finite
VX, 5.

To have a more explicit solution, we restrict the asymptotic region around the inflection
point to the narrow strip :

5l = O(lel"), IX &, 5. 7)1 = 0(e|"*h, (63)
where
p+1 1
max ,P)l<g<p+1, p>§, (64)
obtaining
X~ ¥ +(Gy/Ge)y — G =k - (& —%,()) = 0(lel™),
, ¥ +(G;/Ge)y — GY , (65)
~ o = 0(le|"),
el
where
3 Gy
k= (1 —> (66)
Ge

is normal to the strip and defines the breaking direction.

Replacing (65) into (60) we obtain that, in the narrow strip (63) and (64), the solution
exhibits a universal behaviour, coinciding with the following exact similarity solution of the
Hopf equation (43),

=%+ (Gy/Ge)(§ — Yb)
l—t;,

Vo~

(67)

and describes the plane tangent to the wave at the inflection point (see figure 2). In addition,
the gradient of V behaves like

VieyG
VanV ~ Geee ¥+ S—c , (68)
) ¥+(G3/G)Y —Gl' | Geey =n\2 v -
Get' + 6 (5 —+G5.7) +agies )"
implying that, in the narrow strip (63) and (64),
1 Gy
VenV ™ (1 G_g> (69)

while outside, in the region | X| = O (]€|), it becomes finite. We finally remark that the tangent
plane described by (67) passes through the breaking point.
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Figure 2. In a narrow strip of the plane, the similarity solution describes the plane tangent to the

Figure 3. The vertical plane tangent to the wave at the breaking point.

5.1.2. At breaking. As T 11y, the inflection point becomes the breaking point: X ; — Xy,
the above tangent plane (now tangent at the breaking point) becomes vertical, with equation
k- ()Sc -3 ») = 0, the above strip reduces to the breaking point X b, and the slopes Vi, V3 — oo
as (f —1,)~! (see figure 3).

in the following two subcases:

At the breaking time 7 = 7,, one can give an explicit description of the vertical inflection

(i) ¥ = 0. In this case, the cubic (51) simplifies to £&”* = y &', and the solution V exhibits
the typical vertical inflection preceeding the wave breaking:
12

V~GE+VYE—X),5) = Vi~

1 [61Ge]

Ge
3

. 70
Geer (X — Xp)2 70
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t

@&, )

Figure 4. The two-dimensional singularity manifold S(&, n, t) = 0 near breaking.

(ii) ' = 0. In this case the cubic simplifies to £ — y(G53/Gg)y' ~ 0, and V describes a
vertical inflection also w.r.t. ¥:

Vel lyEe-—smey) = m~tf2__G g
G 3V Geee V(5 - 30)?

5.1.3. After breaking.  After breaking, the solution becomes three-valued in a domain of

the (%, y)-plane, and does not describe any physics; nevertheless a detailed study of the

multivalued region is important, in view of a proper regularization of the model, and/or in

view of the introduction of a proper single-valued shock replacing the multivalued solution.
If7 > 7,(’ > 0), in regime (54), the SM equation S = 0:

Gissé” +2Ge5E'Y + G355 = |G le (72)

describes an elliptic paraboloid in the (&, 7, 7) space, with minimum at the point (g?b, 7,) (see
figure 4). The intersection of the elliptic paraboloid with any 7-constant plane, 7 > #,, defines
an ellipse in the (€, y)-plane (see figure 4), whose coordinates vary in the following intervals
of order O(|e|'/?):

G:|G G¢|Geyy
)< 1ETmE ey Ol 73)
o o

Eliminating &’ from equations (72) and (51), one obtains the SM equation in spacetime
coordinates:

Gy -, Gyy  Gyss
[3|G5|G§gs (x + G—:i’ — G+ 2252 — Gy + 22 ;/3>

2G; 6G:
Gt GeeyGeyy (G 2\ < GelGese 0\ /1
+ — + — oGy | ————=€ —
5 Gme Y)Y —aGesy . <)Y
G:|G 3
=a3(| el esse_y/z>7 (74)
o
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Figure 5. Four consecutive snapshots describing the time evolution of the three-valued region
delimited by the caustic, immediately after breaking. The centre of each picture is the breaking
point.

coinciding with the A = 0 condition. It describes a closed curve of the (X, ¥) plane possessing
two cusps at the points

st = |Gz |Gesze Gy
xc(t)Nxb:F,/%<G—:,l). (75)

If (x+(9), y) are the two intersections of this curve with the horizontal line y = const,
then

4
() — () = —;|Q|3/2 = 0(le]*?). (76)

It follows that this curve is the boundary of a narrow region of thickness O (e*/?) in the
longitudinal direction, and of thickness O (¢'/?) in the transversal direction. In figure 5 we
show its time evolution after breaking.

14
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Figure 6. The three-valued solution after breaking, and the caustic delimiting the multivalued
region.

Away from the cusps, the solution of the Hopf equation is three-valued, but two of the
branches coincide:

Vo= G(& +§, ), Vi=V_=G&+6.5) (77)

and the slopes of the coincident solutions are co. We remark that the closed curve, being the
envelope of the intersections with the (%, y)-plane of these vertical planes tangent to the wave,
is a caustic (see figure 6).

At the two cusps, characterized by the condition Q = R = 0, the three real roots of the
cubic coincide and the corresponding three solutions of the Hopf equation coincide as well:

Geey|Ge| [2Geset’ 2Geget’
V0=V+=V—=G(§hi e T 5 £ G %) (78)

Gese

Inside the caustic, the discriminant A is strictly negative, the cubic admits three different
real roots and the solution of the Hopf equation is three-valued. This is the multivalued
region that has to be replaced by a proper shock layer, whose features depend on the desired
regularization. Outside the singularity manifold, A > 0 and the solution of the Hopf equation
is single valued.

We end this section remarking that the similarity solution before breaking, the vertical
inflection at breaking, and the caustic after breaking make clear the universal character of the
gradient catastrophe of two-dimensional waves evolving according to the Hopf equation. As
we shall see in the following sections, similar considerations hold for the gradient catastrophe
of two-dimensional waves evolving according to the dKP equation. Similar results on a
different model can be found in [31]. A general singularity theory for caustics and wave fronts
can be found in [32].

5.2. Longtime breaking of dKP waves

Inverting the transformation (42), the formulae of section 5.1 allow one to describe the longtime
breaking of dKP solutions. Now
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1
U(-xv Vs t) = _ZG(s’ 5})9

) Vi (79
Y _2ViGE, ) y=2
= +— = ) ) = a7
S=aty Y Y=
and
1 (Ge(6.9), 2G:(5.9) + 3. G5(&. 5
ViU = 1 (Ge6.9). 5,668 3) + 5,656, 3) (80)
' Vi 1+2V1G(, )
Let gb = (&, V») be the breaking parameters and (%, V5,7,) be the breaking

point associated with the solution (44) of the Hopf equation (43), and characterized by
equations (47)—(49). Then a localized solution U (x, y, t) of equation (40) first breaks at
the time

7\? 5
I = <5> = (2G§) s (81)

at the point X, = (x3, y;) of the (x, y)-plane given by
Xp = Xy — ity Vb = 2Jplp. (82)
We remark that X, is the intersection of the parabola x + y?/4t, = &, with the straight line
Yy =DYb-
The inflection point X s (1) = (x(¢), ys(¢)) is given by

xp() = xp +2G (V1 — 1) — T (t — 1) ~ xp + [21G¢|G(1 — €/4) — 5] (t — 1),

(83)
i) = yp +25(t — 1),
where the small parameter €, introduced in (53), reads
r—t
e=—" (84)
tp

in terms of the dKP coordinates. The inflection point X s (¢) is the intersection of the parabola
x+y?/4t = Xp = X + 2G(J/t — /1) with the straight line y = y/(7) (see figure 7), where
Xy is defined in (61) . At the inflection point, Uy, = Uy, = 0, and U and its gradient take the
following values:

G o1 . 1G; 1 )
U= VanU == Lyt =)~ (1,55 +2G5Ge).  (85)
rr—1p t—1

Throughout this section we make a systematic use of the expressions of the small variables
X', ¥, ¥ in terms of the dKP variables:

o2
V=5 (0= = -+ S ) - ev o),
§ = 5 BRI o) = 5,220 0 ko), (86)
Yb Yb
~ t—1
7= (1 —e/4).

NG

16
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Figure 7. The two parabolas containing the inflection and breaking points, immediately before
breaking, together with the narrow strip of the similarity regime.

5.2.1. Before breaking. 1Ift < t,, in regime (54), the real solution U of (40) is single valued
and described by

1
U, y,t) ~ —=G(E&, + &), T+ 7 87
(y)ﬁ(ébéoyby) (87)
where & is defined in (55) by Cardano’s formula, and %', 3" are given in (86).

To obtain a more explicit solution, we restrict the analysis to the narrow strip around the
inflection point, defined by the conditions

2 e o ly =y, @l
IX| ~ [k - (X = Xp0)] = 0|, Tf = O(lel"), (88)
where p, g are defined in (64) and the vector
k= (1,5 +2G:Gy) (89)

characterizes the breaking direction. On this strip the cubic linearizes and its solution reads

_ G- - (2G|Ge| — 7)1 — 1) + (35 + 2G Gy) (v — yp — 235 (1 — 1))

g’ (90)
Tt —1y)
and U is approximated by the exact similarity solution of equation (41):
)2 ~ ~
X+ =T+ g (3 — ) o
PNAVIEING!
Equation (91) is equivalent, at the same order, to
I~ [t X — xp + Vit —tp) + (5 +2GeG3) [y — yp — 25 (t — 1)]
t =1
X=X+ Yot — 1) + (3 +2GeGy)ly — yp — 255t — 1)] 92)
t—t ’
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describing the plane tangent to the wave at the point x s (see figure 7). The gradient of U reads,
from (80),

1 Ge, 2Ge + 5. Gy
Ve U= \/_ Gs / G(sss 2: Gees )2 ) a =27’ ©3)
Nz W[(é Geee Y ) + Giee ]
where £" and ' are given in (90) and (86). On the narrow strip (88) it is very large:
94)

while outside, for | X| = O(]e|), it is finite.

5.2.2. At breaking. As t 1 1, the inflection point becomes the breaking point: X ; — X, the
above tangent plane becomes vertical, with equation k- (X —Xp) =0and U,, U y —> 00 as
t—n)""

At the breaking time ¢ = #,, one can give an explicit description of the vertical inflection
in the following two subcases.

If y = y;, the solution exhibits the typical vertical inflection preceeding the wave breaking:

\/7 GS
U ~ —G U, ~ 95
NG E+Vy(x—xp), ) = R FETAT (95)

If x — xp + 05 (y — yp) + 222 = 0 (a line approximately tangent to the parabola at x;),
U describes a vertical inflection also W.I.t. y:

1 y J27G:G,  Gq
U~—G(&+927G Gﬁ(y—y),—) = U, ~ . (96)
Vi <" Ry, 3 V-

(v \[7

5.2.3. After breaking. 1ft > t;, inregime (54), the intersection of the SM with any 7-constant
plane defines an ellipse in the (£, n)-plane (see figure 4), corresponding to the following
caustic in the (x, y)-plane, defined, as in (74), by

GeesGeesGeyy (G y |G¢|G )\ =T
[3|G§|Gm st ;&; £55 (G;}6+y2>y—aG < sassse_yz>y}

G:|G ’
— a3<| E' EEEG _ 5}/2) , (97)

o

where now

y = ?b—y — yf(t),
Yb

1
X=x—-xp— [2G|G§| <1 - Zé) -y - 6)} (t = 1) +[(F5 +2G G5)(y — v (1))

(98)
— l) 2
G _ 1 — w~ y yf(
+Gi(y — y)*]( e)+2G 33 <—yb
3
. y—yr) nyy~3(y—Yf(t)>
— 2|Ge|G5y,(t — 1) + .
|G: G5y b - 6G: Vi "

The caustic exhibits two cusps at the points

) . G )
FE() ~ % :F,/Z%(r — 1) - (p +2G¢ Gy, —1). (99)

18
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In addition, if (x*(y), y) are the two intersection points of the caustic with the line y = const,
we have

2032 [(|Ge|G v\
+ - £1Uess Y —)r 3/2
xX(y) —x(y) 3|GE|GE€E< e ¢ ( o ) ) (lel**) (100)

Therefore the caustic is the boundary of a narrow region of thickness O(|¢|*?) in the

longitudinal direction, and of thickness O(\/ 2%0 — tb)) in the transversal direction (see
figure 5). On it, the discriminant A of the cubic is zero and, away from the cusps, the solution
of equation (40) is three-valued, two of the branches coincide:

1 P 1 I
Uo = \—/;G(éb +&0, b+ 5, Ur=U-= ﬁG(Sb +&L 3 +5) (10D
and the slopes of the coincident solutions are oo (see figure 6). At the two cusps, characterized
by the condition Q = R = 0, the three real roots of the cubic coincide and the corresponding
three solutions of equation (40) coincide as well:

1 Geen|Gel?? |G
Uo= U, = U_ = G (g +2 %% S5 (1 — 1),
Vi Gest «

G
o F 21Ge P 2 - m) : (102)

o
Inside the caustic, the discriminant A is strictly negative, the cubic admits three different real
roots and the solution of equation (40) is three-valued. Outside, A > 0 and the solution of
equation (40) is single-valued.

The formulae of this section describe, after replacing U by u, the longtime breaking of the
dKP solutions u if, for instance, the dKP initial data uo(x, y) = u(x, y, 0) are small. For small
initial data, the inverse spectral transform for dKP, developed in [26], simplifies enormously.
The RH spectral data are expressed in terms of the initial data as follows:

/
Ror o)~ ~ [ € w v, (103)
i Jg2 §1 — &
and function G, appearing in all formulae of this section, is also given explicitly in terms of
ug via (26):

1 d¢’dud
G(E.n) ~ F/R %Mog/(é&/ —ny. ). (104)

Summarizing, we have shown that small and localized initial data evolving according to
the dKP equation break in the longtime regime, and we have described the analytic aspects
of such breaking in a surprisingly explicit way. The similarity solution before breaking, the
vertical inflection at breaking and the caustic after breaking make clear the universal character
of such a gradient catastrophe.

6. The gradient catastrophe at finite time

Small and localized initial waves evolving according to the dKP equation break in the longtime
regime in the way described in section 5.2. If the initial wave is not small, the gradient
catastrophe takes place at a finite time and, in this section, we study the universal features of
this phenomenon immediately before breaking.
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The analysis is very similar to that of section 5; the main difference is that, while function
G, appearing in the implicit equation (44) for the longtime solution of dKP, is an essentially
arbitrary smooth function of two variables, function F, appearing in the implicit equation (13)
for the solution of dKP at finite time, is a specific function of three variables, connected with
the spectral data via (14). As we shall see, this implies that, at breaking, F satisfies an extra
condition (equation (121) below) that is instead automatically satisfied when F is replaced by
its asymptotic form:

F( t) —> —1 G +—y2 R (105)
.
Y 1t * 4t 2t

The inverse problem of the dKP equation, summarized in formulae (13) and (14), defines
an implicit system of equations for the solution u:

u=F(,y,t), (106a)
x=C+2F(,y,)t. (106b)

In analogy with the considerations of section 5, the singularity manifold of dKP is the
two-dimensional manifold characterized by the equation

S y.0)=1+2F (. y,.0r =0, (107)
that can be solved with respect to ¢, if F; + Fy,t # 0, giving
t =1, y). (108)

Since

Ve F(C. y.t
Vo = ~eF &0 (109)
1+2F: (¢, y, 0t

the gradient of the localized wave becomes infinity on the SM, and the wave ‘breaks’. Let 7,
be the first time at which § = 0 at a point ¢, = (¢, yp) of the (¢, y)-plane:

L4+2F: (G )ty =0 = 1, =1(5); (110)
then we obtain the following conditions characterizing the breaking point (Eb, tp):

1+ 2, Fy (G, 1) = 0

F{(Zb, 1) <0, F; (G, 1) + tngt(Zb, 1) <0, (111
F;;(Eb, tp) = F;y(Zb, t,) =0,
Foe@pty) >0, B= Fre Qoo ty) FryyCon 1) — iy (G 1) > 0.

Due to (106b), at the breaking time f;, the wave breaks in the point X, = (xp, y,) of the
(x, y)-plane defined by

Xy = Gy + 2F (G, 1)1, (112)
As before, we evaluate equations (106b) and (107) near breaking, in the regime:

X =xp+x, y=y+y, t=t,+t, L=+, (113)
where x’, y', t’, ¢’ are small, obtaining, at the leading order, the cubic

% +a(E? +b(y 1 —yX &Y 1) =0, (114)

20
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where now
3F, 2(Fr + 1, F, Feyy
atyy = Leor s by 1) =3 [ (Fe+tFe) | Foyy y/2j| 7
Freg Feet Free

F,
X(x,,y/,f/)=x/_2F(§b7y,t)t/_Z[F(fb,)’,t)_F]fbNX/"‘F))’/
¢ (115)

F F
—2F+t, )t — =22 — 2(Fy + 1, Fy)y't’ — =22 y73,
( b I) 2|F;|y ( y b yt)y 6|F§-|y

_ 6]
3%

and € is given again by (84), corresponding to the maximal balance |¢'|, |y'| = O(|€|'/?) and

X = 0(l¢|*®). In formula (115), and in the rest of this section, all partial derivatives of F

whose arguments are not indicated are meant to be evaluated at the breaking point (Zb, 1p).
The three roots of this cubic are given by Cardano’s formulae (55)—(57), where now

, 2 B
Q. 1) = —(F; +t,Fr)e + ——y". (116)
FMC F;;;
Function S reads, at the leading order,
S~ 2(Fy +ty Fe)t' + (Fre €+ 2Fey ' + Fryy Y. (117)

For t < t,(t' < 0), since the coefficient Q is strictly positive (see (111) and (116)),
so is the discriminant A in (57). It follows that &; is real and &} are complex conjugate
roots; therefore the solution of dKP is single-valued and it is described Cardano’s formula.
In addition, function S is also strictly positive, implying that the gradient of u is regular near
breaking, in the spacetime region (54).

Restricting the asymptotic region in the (x, y)-plane to the narrow strip |y’| = O(|€]9),
|X| = O(|e|P*"), where p, ¢ are defined by the inequalities (64), then |¢'| = O(|e|?), 73,
at”? « b¢’ ~ y X, and the expressions for X and ¢’ simplify:

F,
X = + F}y/ —2(F + 1, F)f' + O(Je|”™),
¢

; x/+%‘y/—2(F+tbF,)z’ (118)
2(Fy + 1y Fep)t! ’
implying
F, "+ (F,/F;)y
u~F+ c X HB/F)Y (119)
2(F§+tbF(t) t/
Since
— + (Fy/F - +c(t — 1
s = (x —xp) + (Fy/F)(y — yp) + ¢t — 1) (120)

t—1
is an exact similarity solution of dKP, where c is an arbitrary constant, comparing (119) and
(120), it follows that ' must satisfy the following condition at breaking:

Fr +2t,F;; =0 (= Fu=F}), (121)
implying that
S ~ Fg—l‘/ + (Fg-“-;/z + 2F;;yy/§’ + ngyy/z)tb,
, 2 B, ., X+ (Fy/F)y —2(F +t, Fy)t’ (122)
Q(y,t)z——e+Ty2, &~ v < - oy
F(CE F;;; th
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Therefore, in the narrow strip
/ FV / / +1
x'+ F’y —2(F +t, F)t'| = O(Je|”™) (123)
¢

of the (x, y)-plane, the solution u is described by the exact similarity solution of dKP:

(x —xp) + (Fy/F )y — yp) — (F +2t, F)(t — 1)
t—1t ’

U~ Usim =

(124)

while the asymptotic expression for the gradient of u follows from equations (109) and (122):
Ve F

Vet ™ e (VRRJ Y A P N2 B a0
U+ 2\F{|( Fot’ + my) ANFe Fee Y
Then
1
Vit = —- r;,(]’ Fy/F;) (126)

in the narrow strip (123), while outside, for | X| = O(|¢]), the gradient is finite. The vector
k= (1, Fy/ F;), orthogonal to the strip, defines the direction of breaking.

In the limit #11,, the narrow strip (123) reduces to the breaking point, the above tangent
plane becomes vertical, with equation F; (x —x3)+F,(y —y») = 0, and the slopes u,, u, — o0
at that point as (r — 1,) ! (see figure 3). As before, we consider two sections in which the
description is simpler.

If y' = 0, the solution of dKP is described by the typical vertical inflection at the breaking
point X:

VY Fe
3 Jx—x)?

u~F+yx—xp), Yo, 1) = Uy~ (127)

If x' = 0, we have again the vertical inflection at X;:

u~F Cb—“yi(y—yb),yb,tb = uyw—l“yiL- (128)
|F| 3VUNF (y — yp)?
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